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Linear Structure-Factor Inequalities and their Application to the Structure
Determination of Tetragonal Ethylenediamine Sulphate.

By YosHHARU OKAYA AND IsaMU NiTTA

Department of Chemistry, Faculty of Science, Osaka University, Nakanoshima, Osaka, Japan

(Received 11 February 1952)

e have derived new linear structure-factor inequalities for crystals with centres of symmetry.
We have also introduced the concept of arbitrariness in the systematic applications of the in-
equality methods. We have applied our linear inequalities to the Ujp’s and Upy’s of tetragonal
ethylenediamine sulphate (of hitherto unknown structure), and have determined almost all the
signs of important structure factors within a few hours. With these signs, we have synthesized
electron-density projections from which we have assigned approximate atomic positions to all

atoms except hydrogen.

Introduction
Using the inequality of Cauchy,
| Zab? = {Zlal?} {Z16:/%} 1)
? ? 1]

Harker & Kasper (1947, 1948) and then Gillis (1948a)
have obtained relations between the magnitudes of
some structure factors and the signs or phases of
others. These relations, the so-called Harker—Kasper
inequalities, have since proved to be very useful for
the determination of crystal structures. Examples of
applications have been reported in the papers by
Gillis (1948b)* on monoclinic oxalic acid dihydrate
(COOH),.2H,0, by Kasper, Lucht & Harker (1950)
on orthorhombic decaborane B,yH,,, and by Burbank
(1951) on «-selenium, Seg.

However, in the practical application of the Harker—
Kasper method one has to use inequalities containing
quadratic terms of structure factors, and this causes
the computation, as well as a preliminary inspection,
to be rather involved. Thus it would be more useful
if inequalities containing only linear terms could be
found. The present paper deals with this problem,
first limiting it to crystals with centres of symmetry.
The case of crystals without centres of symmetry will
be dealt with later.

The so-called unitary structure factor, Uy, which
we shall use hereafter, may be given the following form
for crystals with centres of symmetry:

Una = =28 = Sy cos 2nlhatbyctlz), (2)
Fogo-f g

where F,;; is the ordinary structure factor, Fyy =

Y Z, = total number of electrons in the unit cell,

3

f = the unitary atomic scattering factor (in the sense

of Harker—Kasper), and n; = Z;/ X Z;, Z; being the
[

number of electrons in the ith atom. This formula is

* Cf. some remarks by us (Okaya & Nitta, 1952).

based on the assumption of a similar charge distibution
in all atoms. The unitary structure factors have the
following property:

|Uhkz| =100, (3)
Upgpo = 1:00 . 3"

Derivation of linear inequalities

It is well known that, in general, if a; and b; are real,

ai+b3 = 2lady| , (4)
and, as
Zlaibi] = |Zaibi| s
k2

one obtains K

Z.niag+zn€b? =2 Izniaibil s (5)
2 ? ?
with positive =n;’s.
In the first place, if we put in (5),
a; = cos 2n(hx;+ky;+12;) , l
f (6)
bi = I/m 5
where h, k and ! are integers and, for the sake of
convenience, m = 0, we obtain

2 ni+ 2 n; cos 2m(2ha;+ 2ky;+-20z;)+ 2, n%
? v 1

> 21 S0, cos 2n(bar g+, (7)

m

which further becomes on combining with (2), and
since Zn; = 1,

24+-m2-mPUgp 01,20 = 4m|Upy - (8)

Putting for example m =1, 2 and )2 in (8), we
obtain respectively,

3+ Uspora = Ul » (8a)
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3+2Uz010 = 41Ul
24+ Usporor = 2)/2. |Upial -

Obviously, the relation (8b) is more effective than
the other two for narrowing inequality relations.
In the second place, if we put in (5),
} 9)

(80)
(8¢)

and

a; = cos 2n(px;+qy;+12;) ,
b; = m cos 2n(p'x;+q'y;+7r'z;), m=0,
we obtain
2 n[14+m24-cos 272(2px;+2qy;+2r2;)
i
+m? cos 271(2p'x;+29'y;+-2r'%;)]
=-2m| Zn; [cos 2n{(p+p')x;i+(a+q )y + (r+7')2:}
?

+cos 2a{(p—p')x;+(g—q )yt (r—7")2}1] . (10)

On replacing p+9’, g+¢', r+r'; p—p', g—¢', r—7'

by k., k,L; &', k', U respectively, and on assuming that
the latter are integers, we obtain from (10)

2 2
1+m?+ U, B, k4R, e 1 U =N, k=K, -V

= 2m|Upy+ Uper| - (11)
Similarly, we obtain another relation:
14+m2+m2Upp, kv, 100+ Unow, kv, 1t
Z 2m| U+ Ul - (12)

Putting m = 1,2 and )2 in (11) and (12) we get
respectively,
2+ Unsw, ke, ir+Unwy i, i Z 21U+ Uil

(11a)
5+ Uniw, tew,irr +4U sy, 1, 1v Z H U+ Upe|
(1)
544U w, kw100 Ot ki, 10 Z HUpu+-Uppr|
(128)
34Upiw, ke, 1o +2Un w1 1v Z 22\ Upat- U]
and (1 1 C)
342U w, kew vt Ui, k—re, 1rr 2 22| Upig+ U] -
(12¢)

The relation (1l1a) can also be obtained from (12)

by putting m = 1, and might be numbered as (12a).
In the third place, if we put in (5),

} (13)

a; = sin 2n(px+-qyi72)
b; = m sin 2n(p'x;+q'y;+r'z), m =0,
we obtain
2 ni[14-m?—cos 2n(2px;+2qy;+-2rz;)
' —m? cos 27(2p x;-+2q"y; +2r'z;)]
= 2m| Zn; cos 2n{(p-+p' )i+ @+ i+ (r+7)z}
—c0s 2{(p—p' Vo Hg—a Wit r—r)e}ll, (14)
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and, by the same substitution as above,
1+m*—Upyw, prw, 00— MUy v, v

= 2m|Upy— U] - (15)
Similarly, we have
T+m2—m2U e, kw100~ Unew, o, v
2 2m|Upy— Uy - (16)

Putting m =1, 2 and )2 in (15) and (16), we get,
respectively,

2— Uh+h’, ktK, LU Uh—h', k—k' 1 = 2] Uhkl— Uh'k'l’] ’ (15(1)

5— Uh+h’, k+k, l+l'—4Uh—h’, k—K, - 2 4[ Uhkl— Uh’k’l’[ ’

(15b)
5—4Usw, ke, 00— Uhow, w10 Z U= Ui,
(16b)
3—Uniw,kew,ir—2Unw, kv, 10 Z 212\ Uy~ U]
and (15¢)
8=2Upw, kw100 — Un, ki, 10 Z 22\ Upg— U] -
(16¢)
Lastly, by putting in (5)
a; = p cos 2n(hx;+ky;+1z;)
+q cos 2n(h'x;+-k'y;+-1'z) , §(17)

=r, r=0,

we obtain, omitting the intermediate derivations:

PP A2 402U o ok, 2+ 0P Ui, o, 20 + 209U py i ks v, 14
+Un v b, 1v) Z 471PU s +qUpr| . (18)

All these formulae are also valid for non-integral
values of A, k and .

Discussion of derived inequalities

The above inequalities (8), (11), (12), (15), (16) and
(18) have been derived for crystals with centres of
symmetry. However, in practical applications we use
inequalities between structure factors of the form
(hkl) with one index zero. In such cases we need not
confine ourselves to crystals with three-dimensional
centres of symmetry, but can make use of the in-
equalities if a principal projection, (kk0), (0kl) or (%01),
has centro-symmetry.

As we have already pointed out in a short note
(Okaya & Nitta, 1952), it is essential to ascertain at
the beginning of a phase determination how many
arbitrary sign parameters will remain undetermined
owing to the possibility of choosing the origin at
different centres of symmetry. In the case of pro-
jections having additional centres of symmetry this
multiplicity of the answer will be increased.

By comparing the inequalities (11) and (12), or (15)
and (16), we see that either one of the inequality pairs
may be chosen with an adequate m value, so as to
make the relation more strongly restrictive.
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It is easily verified mathematically. that our in-
equality relations are numerically less restrictive on
phase relations than those of Harker-Kasper. How-
ever, in actual application, this apparent disadvantage
is of minor significance, as we have checked in the
cases of phase determination applied to Ugy's of
monoclinic oxalic acid dihydrate (Gillis, 19485), Uj,’s
of tetragonal pentaerythritol (Watanabé & Nitta,
1938) and to Uyy's of orthorhombic hydrazonium
sulphate (Nitta, Sakurai & Tomiie, 1951), where the
phases of structure factors were already known. The
great convenience of our inequalities comes from their
linear form; this simplifies computation to the point
that by simple inspection adequate structure factors
can be picked out between which the inequalities
operate successfully. This advantage is quite important
when one works on unknown structures by means of
the inequality method. Moreover, by introducing an
appropriate weighting coefficient m, we can largely
eliminate errors due to more or less inaccurate U,y
values or to those not observed.

When a crystal possesses further symmetry elements,
besides centres of symmetry, forms of inequalities
can be derived other than those given above. How-
ever, such introduction of various formulae, valid for
special cases, only causes formal complications of
minor practical value. Therefore, they will not be
further considered. We can always use the original
inequalities; the other symmetry elements then give
additional equality relations between structure factors.
Further remarks will be given in the following para-
graphs.

Before applying our inequalities to the case of the
unknown structure of tetragonal ethylenediamine
sulphate, we summarize the most useful inequalities
in Table 1.

Table 1. Most useful inequalities

3+2Ush 20 21 = 4 Ui » (88)
2+ Unintripkotrt + 0wkt v Z 2|0+ Upeer],  (11a)
2—Upins kst — Un—n'r k=2t Z 2{Una— U], (15a)
5+ Unenr ks it +4Un—p k-t v = HUpia+Upper] ,  (110)
3—Upiw kit st — 40w k-1 = 4|Upa—Uper| ,  (15b)
5+4Unrn ki i+ Un—n'r kb0 -0 = 4| Upa+Unev| s (120)
5—4Unin kvt il — Ut k-1t = 4| Upia— Uperr} . (16D)

LINEAR STRUCTURE-FACTOR INEQUALITIES

We have also solved the structure of monoclinic
aspirin by means of these inequalities; this will be
published later.

Application to tetragonal ethylenediamine
Sulphate, (CHzNHz)z. HzSO4

In order to show how simply our inequalities are
applied, the case of ethylenediamine sulphate will be
given here. The experimental data have been kindly
supplied by K. Sakurai and Y. Tomiie, to whom our
thanks are due; they will report the detailed analysis
of this crystal in the near future. The tetragonal
unit cell, containing eight formula units, has dimen-
sions
a=845 and c¢=1799 A.

The space group, D}-(C4,22,, follows from the syste-
matic absences: (hkl) for h-+k == 2n, (hhO) for b &= 2n
and (00l) for I &= 4n. There is no centre of symmetry
in the three-dimensional sense, but the projections
onto the (z¥), (¥ 2) and (z2) planes have centres of
symmetry, so that our method is applicable. The
axes could be so chosen that the unit cell becomes
simple tetragonal containing four molecules, but we
shall adhere to the choice of Sakurai & Tomiie.

Tables 2 and 3 list the values of the |Uj,l’s and
|Uoll’s, as .calculated by Sakurai & Tomiie using the
method of Wilson (1949), with a temperature factor
with B =1-0 A% From the consideration of the
symmetry elements of the space group; it is seen that
the following relations between the U,’s hold (origin
on a twofold axis):

Uio = Use = Uppo = Usyp for b and & both even, (19)

and

Usio = Usg = — Uprpo = — Ugyo for k and % both odd,
(20)

and that there is one arbitrary parameter connected to
the Upeo's with 2 and & odd. Further, between the
U,y's the following relations exist:

Table 2. |Upl’s, ethylenediamine sulphate

A\ 0 1 2 3 4

0 1-00 (0-00) 0-08 (0-00) 017
1 (0-00)  (0-00)  (0-00) 0-10 (0-00)
2 0-08 (0-00) 0-30 (0-00) 0-09
3 (0-00) 0-10 (0-00)  (0-00)  (0-00)
4 0-17 (0-00) 0-09 (0-00) 0-84
5 (0-00) 0-00 (0-00) 0-24 (0-00)
6 0-00 (0-00) 0-45 (0-00) 0-09
7 (0-00) 0-37 (0-00) 0-00 (0-00)
8 0-69 (0-00) 0-00 (0-00) 0-00
9 (0-00) 0-32 (0-00) 0-39 (0-00)

10 0-00 (0-00) 0-40 (0-00) 0-00

U,pp = U,q; for | = even, (21)
Uy = —U,g for I = odd, (22)
5 6 7 8 9 10
(0-00) 0-00 (0-00) 0-69 (0-00) 0-00
0-00 (0-00) 0-37 (0-00) 0-32 (0-00)
(0-00) 0-45 (0-00) 0-00 (0-00) 0-40
0-24 (0-00) 0-00 (0-00) 0-39 (0-00)
(0:00) 009  (0:00) 000  (0:00)  0-00
(0:00)  (0-00) 0-32 (0-00) 0-00
(0-00) 060  (0:00) 013
032  (0:00)  (0-00)
(0-00) 0-13
0-00

(0-00) means absences by extinction rules.
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Table 3. |Uyyl’s, ethylenediamine sulphate

A\ 0 2 4 6 8 10
0 100 008 017 000 069 000
I (000) 020 008 003 041 067
2 (000) 020 008 034 000 037
3 (0:00) 000 010 027 024 023
4 022 000 024 012 049 000
5  (000) 02 027 013 017 035
6 (000) 016 013 053 015 026
7 (000) 010 024 039 000

8 033 011 047 022 033

9 (0000 026 028 028 000

10  (0:00) 007 000 039 000

11 (0-00) 015 030 000  0-00

12 000 000 040 000 000

13 (0:00) 000 000 000 000

14 (0000 013 000 000 031

15  (0:00) 000 000 014 022

16 052 000 037 000

17 (0:00) 000 000  0-00

18  (0:00) 057 000 029

19  (0:00) 000 000 034

20 037 000 058

21 (0:00) 000 023

22 (0-00) 0-52

(0-00) means absences by extinction rules.

and also there are two arbitrary parameters; one
connected to the Uyy,’s with [ = odd, and the other
to those with 2 = 2Xodd. The above four relations
would have taken a slightly different form if we had
chosen the simple unit cell.

Procedure for determining the phases of the Uj,o’s
By (11a)

2+ Uggo+ Usoo = 2|U gg0+ Usiol »
where Ugy = Uygy and U,y = Uyzo by (19).

(T1)

Calling Sy, the sign of U, and using the values
of Table 2, (T 1) becomes

242X 069805, = 2/0-840-84| ,
1406985, = 1-68 ,

or

and we have obviously
Sogo = +1. (R1)
By (12b)
544U 439+ Usgo = 4| Ugso+ Usiol »
with Ugzy = Us,g by (19), and thus

5-+4 X 0-848,9+ Usso = 4/0-45--0-45] .

(T 2)

Here, although Ugg, is not observed, we can easily say

Suo = +1, (R2)
because generally |Ugz,l < 1-00.
By (115) and (15b) we have
5+ Us02014Ug20 = 4|Ugpo+-Ussol (3
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from which, using (R 1),
54-0-408,9,2,01-4 X 0-458¢55 = 4]0-694-0-308 50} .

If we take 8,5 = +1 in the sum formula of (T'3),
we have Sg = +1, whereas if S,,, = —1 in the
difference formula, we have S5, = —1, so we obtain

(R3)

a being used for the sake of later convenience.
On the other hand, by (12b) and (16b) we have

Sg20 = Sz = @,

5:!:4U1o,5,o:f: Ugso = 4|Usgpot-Ussol » (T4)
and quite similarly we obtain
81020 = Spz0 =@ . (R 4)
Next, by (11a) and (15a),
2+ Uz,lo,o:t U 10,20 = 2{Uge0tUsaol » (T'5)

which becomes, using (R 2) and (R 4),
242%x 0402 = 2(0-60S4.,1-0-84] .

In the sum formula, a = +1, if Sg = +1, and in
the difference formula, @ = —1, if Sgg = —1. In the
derivation of these conclusions some numerical
contradictions arose; these can be attributed to
errors in the Uyy’s used, possibly, or at least partly,
due to the use of the too small value B = 1-0 A2
in the temperature factor. Thus we have

Seeo = @ - (B 5)
By (115) and (15b)
5:}:4U570iU13,_1,0 = 4 Ug30+-Ulzol » (7 6)

which gives, using (R 2),
544X 0-328570 L Uyzi0 = 4/0-398y5,1-0-84| .
From this we obtain, as before,
Sa30 = S5z -

As we have already mentioned, there is an arbitrariness
in choosing the signs of U,’s with %2 and k odd, and
we put accordingly

Sozp = 8520 = 7, (R 6)
where x is an arbitrary parameter.
By (1la) and (15a) we have
24 UgeotUsio = 2|U 0t Useol » (77

which becomes, using (R 3) and (R 5),
24-0-60a-+-0-45a = 2{0-178,4,1-0-45a] .

In the sum formula, if S, = @, we have a = -1,
and in the difference formula, if Sy, = —a, we have
a = —1. Thus

S0 = +1.

By (15a) we have

(B7)
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Table 4. The phases of Upy’s, as determined

W\ 0 1 2 3 4

0 +1-00  (0-00)  ]0-08  (0-00) +0-17
1 (0:00)  (0-00)  (0-00) —0-10z  (0-00)
2 10-08)  (0-00) —0-30 (0:00) 009
3 (0-00) 4-0-10z  (0-00)  (0-00)  (0-00)
4 +0-17 (0-00) 009  (0-00) +0-84
5 (0-:00)  0-00 (0-:00) —0-24z  (0-00)
6 000  (0-00) —0-45 (0-00) 009
7 (0-00) 4037z  (0-00) 0-00 (0-00)
8 +0-69 (0-00) 000  (0-00) 0-00
9 (0-00) —0-32z  (0-00) —0-39z  (0-00)

10 0-00 (0-00) —0-40 (0-00) 0-00

5 6 7 8 9 10
(0-00) 0-00 (0-00) 40-69 (0-00) 0-00
0-00 (0-00) —0-87x  (0-00) +0-32z  (0-00)
(0:00) —0-45 (0-00) 0-00 (0-00) —0-40
+0:24z  (0-00) 0-00 (0-00) -+-0-39z  (0-00)
(0-00)  [0-09]  (0-00) 0-00 (0-00) 0-00
(0-00)  (0:00) —0-32z  (0-00) 0-00
(0-00) —0-60 (0:00) 013
4032 (0-00)  (0-00)
(0-00)  |0-13]
0-00

(0-00) means absences by extinction rules.
|Unko| = 0-13, which remain undetermined.
x arbitrarily assignable.

2— Ulo,E,o“ Uuo = 2|{Uzy0—Usgsol » (T 8)

which becomes, using (B 2) and (R 4) as well as the
extinction rule,

2—0-40a—0-84 = 2|0-378,,,—0] .

Although we obtain from this ¢ = +1 and ¢ = —1,
the former can be regarded as improbable from the
consideration of the nature of inequality relation as
well as the uncertainty due to the inexact temperature
factor. Thus we obtain

a=—1.

(R 8)

Up to this stage we have determined the signs of
all important structure factors Ugy’s with - and %
both even.

Next, by (11a) and (15a),

24 Us0+tUsio 2 2|U 1301 Uggol » (T9)
which becomes, using (R 2), (R 6) and (20),
24-0-322F0-108, 5, = 2]0-108,5,1-0-84] ,
and hence
Sigo =2 . (R9)
By (11a) and (15a) we have
24 Uyi0Usgo = 2|U1y0+Usggo! (T'10)

which gives, using (R 1) and the extinction rule,
240-378,7010-328,99 = 2|04-0-69] .

As the sum and difference relations must hold
simultaneously, we have

8170 = —Sye0 = bz, (R 10)
where a factor b is introduced to adjust their relation
to Sgp0 = .

By (11a) and (15a) we have
2+ UnotUigo = 2{Us503:Ussol > (T'11)

which becomes, using (R 2), (R 10) and (20),
24 (—0-37bx)+(—0-32bx) = 2]0-258;5,1-0-84] ,

and hence, as above, we get
Sy50 = —bz . (R11)

Up to now we have obtained the signs of all important
structure factors Ujy,’s with 2 and £ both even as
well as 2 and k both odd, except for a condition
concerning the value of b. For its determination, we
also use (11la) and (15a), from which we have

24 Ugso+Uszo = 2|Uzio+ Ul » (T'12)
which becomes, using (R 3), (R 6), (R 8) and (R 10),
24-0-004-0-32x = 2| —0-37bz4-(—0-45)] ,
24-0-32x = 2|0-37bx+0-45] .
Here we get two conditions,
br = +x,

from which we choose, by a similar consideration as
used in the case of (R 8),

br = J-x;
b= +1.

that is
(R 12)

The structure factors of which the signs have so far
been determined are the Upyy’s with absolute values
greater than 0-13, and these are given in Table 4.

Procedure for determining the phases of the Upoi's

For U,,’s the method is the same as for the U,,’s,
except for the use of the equality relations (21) and
(22). For brevity only some illustrative examples of
the tests used will be given, together with the corre-
sponding 7' and R series of formulae. As will be seen
in these formulae, we also used some results already
obtained in the preceding paragraph, such as the signs
of Uy and Ugg,.

5+ Usoo + 4Ut;,o,m = 41 U4o§ + U.ms | s (T}?’)
24 Ugy + Ugg = 2[Ugyy + Uges |, (T14)
2+ Usg + Ugs = 2|Usoo 4 U |, (T'15)
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Table 5. The phases of U,y's, as determined

l\h 0 2 4 6 8 10
0 4-1-00 |0-08| +0-17 0-00 +0-69 0-00
1 (0-00) +0-20y2 0-08| [0-03] —0-41z +0-67yz
2 (0-00) +0-29y |10-08| +0-34y 0-00 +0-37y
3 (0-00) 0-00 [0-10| [0-27] [0-24] +0-23y2
4 +0-22 0-00 +0-24 |0-12] +0-49 0-00
5 (0-00) +0-26y2 —0-27z [0-13] [0-17| +0-35yz
6 (0-00) +0-16y [0-13] +0-53y [0-15] [0-26]
7 (0-00) [0-10] +0-242 —0-39yz 0-00
8 +0-33 10-11| +0-47 |0-22| +0-33
9 (0-00) +0-26yz —0-282 +0-28yz 0-00
10 (0-00) +0-07y 0-00 +0-39y 0-00
11 (0-00) |0-15] +0-302 0-00 0-00
12 0-00 0-00 +0-40 0-00 0-00
13 (0-00) 0-00 0-00 0-00 0-00
14 (0-00) [0-13] 0-00 0-00 [0-31|
15 (0-00) 0-00 0-00 [0-14| |0-22]
16 +0-52 0-00 +0-37 0-00
17 (0-00) 0-00 0-00 0-00
18 (0-00) +0-57y 0-00 +0-29y
19 (0-00) 0-00 0-00 —0-34yz
20 4-0-37 0-00 +0-58
21 (0-00) 0-00 —0-232
22 (0-00) +0-52y
(0-00) means absences by extinction rules.
|Uroi| which remain undetermined.
2+ Usoue + Usoe= 2(Uspy  + Upo,16l » (T16) Sgog = Spos = b, (B 15)
2— Upo — Usou6= 2[Ugpg — Uggg |, (T'17) Sg016 = +1, (2 16)
24+ Uspe £ Uspr0= 2|Ups £ Uz |, (T'18) Sios = Sops = ', (B 17)
2+ Upor = Usn = 2|Upy = Ugg, |, (T'19) Seos = 'Sy = 'y, (B 18)*
54 Usotz £4Us0,20= 4Ugeq == Up,o,16l » (77 20) Sso1 = S10,01 = Y2, (2 19)}
5+ U14,0,21 + 4Us,0,ﬁ = 4IU4,0,20 + U10,0,1] , (T21) S4,o,2o = S4o4 =c, (£ 20)
5+ 4Uy,01 + 3,011 = 4Uss £ Uges |, (T22) Ss,010 = —C'Y2, (R 21)
54 4U10,0,1' + UE,o,ﬁ = 4|Us55 £ Uge |, (T'23) Sy = —b'y?2z = —b'z, (2 22)
5+ 4Ulo,o.i + Usw = 4Uspy + Uses |, (T24) Syo7 = b'y*% =0z, (2 23)
24+ Upor & Usr = 2(Ugpqy =+ Usgz |, (T'25) S5 = a'yz , (B 24)
5 4 4Ulo,o,i + Uso15= 4Ugp; £ Uses |, (T26) Sgor = —¥z, (R 25)
5 +4Uy,01 + Uso7 = HUgpy £ Uyeg [, (T27) b= +1, (R 26)
54 Upoe £4Us0,18= U010 &= Uses |, (T28) Seo9 = Y2 (R 27)
24 Ugoua £ Ugpe = 2\Ugyg + Uy |, (T29) Se,010 = Se,01s =Y, (2 28)
24 Usoo0 £ Usos = 2[Ugg10 - Ups |, (1'30) Seo2 =¥ (R 29)
b+ 4Um,o,s + Uéos = 4i(]205 + Usoo [, (T'31) AS’4,0,12 =c, (£ 30)
24 Uspo £+ Uigon= 2[011,0,11 + Ug0,10l » (1'32) 810,05 = @'Yz , (£ 31)
2 4 Ulo,o,l + Uz,o,‘o = 2|U4ox_9 + Us,o,w[ » (T'33) (R 32)

54 Uggo +4Ugom=

4 U6

The results are:

J
‘50,0,16 = +1,

’
Sgos = Spos = @,

% Uo,o,16! - (T'34)

(R 13)
(R 14)

'’ ’
Sgom = dy*%2 =d'z,

* y is an arbitrary parameter owing to an arbitrariness
connected to the Up’s with A = 2 x odd.
T z is a further arbitrary parameter owing to an arbi-

"trariness connected to the Upy's with I = odd, and the

product yz is connected to the Upg's with A = 2 X odd and
! = odd.
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Sy = —d'y%2 = —d'z,
d =+1.

(R 33)
(R34)§

Using these relations, we obtain the signs of Ujy’s
in terms of a’,b’, ¢, ...,y and z, the last two being
the arbitrary parameters already mentioned. On fixing
the values a’, b’, ... by using appropriate relations,
we come to the final results shown in Table 5.

Construction of electron-density maps

Following the procedures described in the preceding
paragraphs, we have obtained all the signs of Uyy's
with absolute values greater than 0-13 within an hour,
and those of important U,y’s with absolute values
greater than 0-17 within five hours. With their signs,
after putting x = +1, y = —1 and z = —1 for the
three arbitrary sign parameters, and neglecting all the
smaller structure factors, we synthesized electron-
density projections upon the (zy) and (z2) planes.
These projections (Figs. 1 and 2) are seen to be

Fig. 1. Projection of electron density upon (z y) plane, using
the signs determined by the linear inequality method only.
The arbitrary parameter 2 is assigned as +1. The contour
lines are drawn on an arbitrary scale.

already pretty good, and enable us to locate all the
atoms except hydrogen in approximate positions and
" thence to proceed to more exact atomic parameters.
Inspection of the figures indicates that the ethylene-
diamine molecule or ethylenediaminium ion possesses
an atomic configuration of the so-called gauche form.
However, it is not the purpose of our present paper
to go into the details of the crystal structure of this
substance, which will be reported by Messrs K. Sakurai
and Y. Tomiie in the near future. So far we have

§ (R 34) is deduced on the assumption that [Ug,q| = 0-88,
although it lies beyond the observable index field.

LINEAR STRUCTURE-FACTOR INEQUALITIES

derived linear inequalities between structure factors
of crystals with centres of symmetry and have
illustrated the usefulness and simplicity of their

Fig. 2. Projection of electron density upon (z z) plane, using
the signs determined by the linear inequality method only.
The arbitrary parameters y and z are both assigned as —1.
The contour lines are drawn on an arbitrary scale.

practical application in structure determination. There
remains another case of linear inequalities, valid for
crystals without centre of symmetry, on which we
intend to report soon.

We wish to express our thanks to Messrs K. Sakurai
and Y. Tomiie for their kindness of putting their
X-ray data for tetragonal ethylenediamine sulphate
at our disposal and also for their valuable discussion
of the present problem. The cost of this study was
defrayed by the Ministry of Education.

References

Bursangk, R.D. (1951). Acta Cryst. 4, 140.

Gruiis, J. (1948a). Acta Cryst. 1, 76.

Gruuis, J. (1948b). Acta Cryst. 1, 174.

HARKER, D. & KASPER, J. S. (1947). J. Chem. Phys. 15,
882.

HARKER, D. & KASPER, J.S. (1948). Acte Cryst. 1, 70.

KASPER, J.8., Lucar, C.M. & Harger, D. (1950).
Acta Cryst. 3, 436.

NrrTa, L., Saxurat, K. & ToMne, Y. (1951). Acta Cryst.
4, 289.

OrAvA, Y. & Nrrra, L. (1952). Acta Cryst. 5, 291.

WaTaNABE, T. & Nrrra, 1. (1938). Sci. Pap. Inst. Phys.
Chem. Res. Tokyo, 34, 1669.

Wison, A.J.C. (1949). Acta Cryst. 2, 318.



