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Linear Structure-Factor Inequalities and their Application to the Structure 
Determination of Tetrat~onal Ethylenediamine Sulphate. 
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W'e have derived new linear structure-facter inequalities for crystals with centres of symmetry. 
We have also introduced the concept of arbitrariness in the systematic applications of the in- 
equality methods. We have applied our linear inequalities to the Uhko'S and Uh0~'s of tetragonal 
ethylenediamine sulphate (of hitherto unknown structure), and have determined almost all the 
signs of important structure factors within a few hours. With these signs, we have synthesized 
electron-density projections from which we have assigned approximate atomic positions to all 
atoms except hydrogen. 

Introduct ion 

Using the inequality of Cauchy, 

].~aibil 2 ~ {Z[ail 9) {~V]bil~}, (1) 
i i i 

Harker  & Kasper (1947, 1948) and then Gillis (1948a) 
have obtained relations between the magnitudes of 
some structure factors and the signs or phases of 
others. These relations, the so-called Harker -Kasper  
inequalities, have since proved to be very useful for 
the determination of crystal structures. Examples of 
applications have been reported in the papers by 
Gillis (1948b)* on monoclinic oxalic acid dihydrate 
(COOH)~.2H~O, by Kasper, Lucht  & Harker  (1950) 
on orthorhombic decaborane B~0H~,, and by Burbank 
(1951) on a-selenium, Se s. 

However, in the practical application of the Harker -  
Kasper method one has to use inequalities containing 
quadratic terms of structure factors, and this causes 
the computation, as well as a preliminary inspection, 
to be rather involved. Thus it would be more useful 
if inequalities containing only linear terms could be 
found. The present paper deals with this problem, 
first limiting it to crystals with centres of symmetry.  
The case of crystals without centres of symmetry  will 
be dealt with later. 

The so-called uni tary  structure factor, U~**, which 
we shall use hereafter, may  be given the following form 
for crystals with centres of symmetry:  

Fhkl  
U~kl - -  F o o o . f  - -  "~ c o s  2~(hx~+kyi+lzi) , (2) 

where F~,~ is the ordinary structure factor, F0o 0 ---- 
,-~Zi = total  number of electrons in the unit  cell, 

i 

] = the uni tary  atomic scattering factor (in the sense 
of Harker-Kasper) ,  and ni = Zd-~Zi,  Zi being the 

i 

number of electrons in the i th  atom. This formula is 

* Cf. s o m e  r e m a r k s  b y  u s  ( O k a y a  & N i t t a ,  1952). 

based on the assumption of a similar charge distibution 
in all atoms. The uni tary  structure factors have the 
following property:  

]Uhkz[ =< 1.00, (3) 

Uoo o --  1.00. (3') 

Derivat ion of l inear inequal i t ies  

I t  is well known that ,  in general, if ai and bi are real, 

2 2 ai-}-bi __ 2]aibi] , (4) 
and, as 

Z, [aibi] ~_ ]fl-,'aibi], 
one obtains i i 

~, nia~ ~ - ~  nib~ >= 2 ].~ n~a~bil , (5) 

with positive ni's. 
In  the first place, if we put  in (5), 

a i ~-- cos 2re(hxi+kyi~-lzi), I 
= l / m ,  (6) 

where h, k and 1 are integers and, for the sake of 
convenience, m _  0, we obtain 

2 
n i + ~ n i cos 2~ (2hx i + 2kyi ~- 21zi) ÷ ~,ni 

i i i -~  
4 

_----- - - ] ~ n i  cos 2zc(hx~+kyi~-lzi) [ , (7) 
m i 

which further becomes on combining with (2), and 
since Zni ~ 1, 

2~-m~m2U2h,~,2~ ~ 4m] Uh~z] . (8) 

P~tt ing for example m - ~  1, 2 and ]/2 in (8), we 
obtain respectively, 

3+ U~h,~k,~ ~_ 41Uhk,] , (8a) 
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3+2U~.h,~.km > 41Uhktl , (8b) 
and 

2 +  Ugh, ek, gz => 2]/2. I Uhktl • (8c)  

Obviously, the relation (8b) is more effective than 
the other two for narrowing inequali ty relations. 

In  the second place, if we put  in (5), 

a i : COS 2zt(pxi+qyi+rzi) ,  [ 
(9) ! b i = m cos 2zt(p'xi+q'yi+r'zi) ,  m > O, 

we obtain 

n i [ l + m g + c o s  2zt(2pxi+ 2qyi+ 2rzi) 
i 

+ m  9 cos 2zt(2p'x~+2q'y~+2r'zi)] 

~_. 2ml~Sn~ [cos 2xt { (p + p ' )x i+ (q + q')y~+ (r + r')z~ } 
i 

+cos  2zt{(p--p ')xi+(q--q ')yi+(r--r ' )z i}]] .  (10) 

On replacing p + p ' ,  q+q',  r+r ' ;  p - -p ' ,  q--q', r--r '  
by h, k, l; h', k', l' respectively, and on assuming tha t  
the lat ter  are integers, we obtain from (10) 

1 + m ~ +  Ua+a,, k+v, ~+v+m~Ua-h ", e-v, t-r 

> 2m]Uhkt+Uh, k,t, I . (11) 

Similarly, we obtain another relation: 

1 +m~+m~Un+n,, k+r, ~+r+ Uh_~,, e-r, t-r 

= 2ml Uhkz+ Un,rrl • (12) 

Put t ing  m = 1, 2 and ]/2 in (11) and (12) we get 
respectively, 

2 +  Un+n,, k+r, t+z'+ Un-n', k-r, t-r => 21Uhkt+ Un,rrl , 
( l l a )  

5 +  Un+n,, k+r, v~z,+4 Un_h,, k-r, z-r > 41Unkt+ Un,k,t,l, 
( l lb)  

5+4Un+n,, k+r, t+z'+ Uu-n,, k-r, t-r > 41Unkt+ Un,~'vl, 
(12b) 

3 +  Un+h,, k+r,z+r+ 2Un_,,, k_e,t_z, _~ 2]/2] Vnkt+ Ua, k,r], 

and (11 c) 

3+2Un+n,, k+r, t+z'+ Un-n,, ~-r, t-r ~ 2]/21Uhta+ Uh'k'rl • 
(12c) 

The relation ( l l a )  can also be obtained from (12) 
by put t ing m = 1, and might be numbered as (12a). 

In  the third place, if we put  in (5), 

a~ = sin 2zt(pxi+qyrf-rz~) , [ 
(13) ! b~ : m sin 27~(p'xi+q'yi+r'zi) , m > O, 

we obtain 

2~ n i [ l + m  2 -  cos 2zt(2px~+2qyi+2rzi) 
i 

- -m ~ cos 2ze(2p'x~+2q'y~+2r'zi)] 

~ 2ml~,n~ cos 2et{(p+p')xi+ (q+q')Yi+ (r+r')z~} 
i 

--cos 2ze{(p--p')x~+(q--q')y~+(r--r')z~}]l, (14) 

and, by the same substi tut ion as above, 

1 + m 2 -  Uh+h', k+r, t+r-- m9 Uh-h,, ~ r ,  t-r 

> 2m] U~t--  Uh, rrl • (15) 
Similarly, we have 

1 -}-m2--m2Uh+h ,, k+k', t+t'-- Uh-h', k--td, t--t" 
> 2ml Unkt-- Un,rr [ • (16) 

Put t ing  m = 1, 2 and ]/2 in (15) and (16), we get, 
respectively, 

2--  Ui,+h, ' k+k', t+r-- Uh-h', k-r, t-r > 2] Uhk t -  Uh,rr ] , (15a) 

5 -  Un+n,, k+~,', ~ - r - - 4 U u -  n,, k-~,  t-t" ~- 41Unkt- Un,rz, I , 
(15b) 

5-4Un+h,, I,+I,', z+z'-- Un_n,, k-z, t-t" ~ 41Uhkt-- Uh,rrl, 
(16b) 

3--  Uh+h', k+r, v~r--2Uh-h', k-r, t-r ~ 2]/21Uhkt-- Uh,erl , 

and (15c) 

3--2Uh+h,, k+r, t÷r-- Uh-n,, e-r, t-z' => 2]/2[ Uh~t-- Uh, rv[ • 
(16c) 

Lastly, by put t ing  in (5) 

a i = p cos 23r(hxi-f-kyi+lzi) ] 
] t t + q  cos 2g(h x~+k y~+l zi), (17) J b = r ,  r > O ,  

we obtain, omitting the intermediate derivations: 

p2+q~ + 2r ~ +p2 U2h, 2k, 2t+q2 U~h', 2e, gr + 2pq(Uh+h,, k+r, t+ 

+ Uh-h', v-r, t-r) >= 4r]pUhkt+qUh,ler] • (18) 

All these formulae are also valid for non-integral 
values of h, k and 1. 

Discuss ion  of derived inequalities 

The above inequalities (8), (11), (12), (15), (16) and 
(18) have been derived for crystals with centres of 
symmetry.  However, in practical applications we use 
inequalities between structure factors of the form 
(hkl) with one index zero. In  such cases we need not 
confine ourselves to crystals with three-dimensional 
centres of symmetry,  but  can make use of the in- 
equalities if a principal projection, (hkO), (Okl) or (hO1), 
has centro-symmetry.  

As we have already pointed out in a short note 
(0kaya  & Nit ta ,  1952), it is essential to ascertain at  
the beginning of a phase determination how many 
arbi t rary  sign parameters will remain undetermined 
owing to the possibility of choosing the origin at  
different centres of symmetry.  In  the case of pro- 
jections having additional centres of symmetry  this 
multiplicity of the answer will be increased. 

By comparing the inequalities (11) and (12), or (15) 
and (16), we see tha t  either one of the inequality pairs 
may  be chosen with an adequate m value, so as to 
make the relation more strongly restrictive. 
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I t  is easily verified mathematically that  our in- 
equality relations are numerically less restrictive on 
phase relations than those of Harker-Kasper. How- 
ever, in actual application, this apparent disadvantage 
is of minor significance, as we have checked in the 
cases of phase determination applied to Uaoz'S of 
monoclinie oxalic acid dihydrate (Gillis, 1948b), Uhk0'S 
of tetragonal pentaerythritol (Watanab6 & Nitta, 
1938) and to U~o'S of orthorhombic hydrazonium 
sulphate (Nitta, Sakurai & Tomiie, 1951), where the 
phases of structure factors were already known. The 
great convenience of our inequalities comes from their 
linear form; this simplifies computation to the point 
that  by simple inspection adequate structure factors 
can be picked out between which the inequalities 
operate successfully. This advantage is quite important 
when one works on unl~nown structures by means of 
the inequality method. Moreover, by introducing an 
appropriate weighting coefficient m, we can largely 
eliminate errors due to more or less inaccurate Uh,~ 
values or to those not observed. 

When aerystal  possesses further symmetry elements, 
besides centres of symmetry, forms of inequalities 
can be derived other than those given above. How- 
ever, such introduction of various formulae, valid for 
special eases, only causes formal complications of 
minor practical value. Therefore, they will not be 
further considered. We can always use the original 
inequalities; the other symmetry elements then give 
additional equality relations between structure factors. 
Further remarks will be given in the following para- 
graphs. 

Before applying our inequalities to the case of the 
unl~nown structure of tetragonal ethylenediamine 
sulphate, we summarize the most useful inequalities 
in Table 1. 

Table 1. Most useful inequalities 

3+2U2h,  2k, 2l __~ 4[ U/t/a[, (8b) 
2+Uh+a',t+t',~+r+U;~-a',t-t',l-r _--> 2[Uh~+ Ua,vr[, (lla) 
2--Ua+a',~k',v~r--Ua-h',~-t',~-r >= 2]U~--Ua,k,r] , (15a) 
5+Ua+h',~-t',Z+r+4Uh-a',t-~',t-r >= 41U~z+Ua'k'r], (llb) 
5--Ua+a',~+~',~+r--4Ua-a',k-v,v-r ~ 41Ua~--Ua't'r[, (15b) 
5+4Uh+a',k+t',~-v+Um-a',t-t',v-r > 4[U~+Ua,vr], (12b) 
5--4Ua+h',k+V,~-r--U~-h',~--V,~r ~ 4[U~z--Um,,r[. (16b) 

We have also solved the structure of monoelinic 
aspirin by means of these inequalities; this Will be 
published later. 

A p p l i c a t i o n  t o  t e t r a g o n a l  e t h y l e n e d i a m i n e  
s u l p h a t e ,  ( C H 2 N H 2 ) 2 .  H 2 S O 4  

In order to show how simply our inequalities are 
applied, the case of ethylenediamine sulphate will be 
given here. The experimental data have been kindly 
supplied by K. Sakurai and Y. Tomiie, to whom our 
thanks are due; they will report the detailed analysis 
of this crystal in the near future. The tetragonal 
unit cell, containing eight formula units, has dimen- 
sions 

a = 8 . 4 5  and c---- 1 7 - 9 9 A .  

The space group, D~-C4122 x, follows from the syste- 
matic absences: (hkl) for h + k  ~ 2n, (hhO) for h ~ 2n 
and (001) for l # 4n. There is no centre of symmetry 
in the three-dimensional sense, but the projections 
onto the (x y), (y z) and (x z) planes have centres of 
symmetry, so that  our method is applicable. The 
axes could be so chosen that  the unit cell becomes 
simple tetragonal containing four molecules, but we 
shall adhere to the choice of Sakurai & Tomiie. 

Tables 2 and 3 list the values of the [U~0]'s and 
I Uh0zl's, as calculated by Sakurai & Tomiie using the 
method of Wilson (1949), with a temperature factor 
with B = 1-0 A 2. From the consideration of the 
symmetry elements of the space group, it is seen that  
the following relations between the Uhk0's hold (origin 
on a twofold axis): 

U~, = U~o ---- Ukh0 ---- U~ho for h and k both even, (19) 

and 

U~o = U~o = --Ukh0 = --U~h0 for h and k both odd, 
(20) 

and that  there is one arbitrary parameter connected to 
the Uhk0'S with h and k odd. Further, between the 
Uhoz'S the following relations exist: 

Uaol = Uho~ for l = even, (21) 

Uao~ = --Uho~ for 1 = odd, (22) 

Table 2. [ U1aol' s, ethylenediamine sulphate 

k\h 0 1 2 

0 1-oo (o-oo) 0-08 
1 (0-00) (0.00) (0.00) 
2 0-08 (0.00) 0.30 
3 (0.00) 0.10 (0.00) 
4 0-17 (0-00) 0"09 
5 (o.oo) o-oo (o.oo) 
6 o.oo (o.oo) 0-45 
7 (o.oo) 0.37 (o.oo) 
8 0.69 (o-oo) o.oo 
9 (o.oo) 0.32 (o.oo) 

l o  o.oo (o-oo) 0.40 

3 4 5 6 7 8 

(0.00) 0-17 (0-00) 0-00 (0-00) 0-69 
0-10 (0-00) 0-00 (0-00) 0-37 (0-00) 

(0-00) 0-09 (0-00) 0.45 (0-00) 0-00 
(0-00) (0-00) 0-24 (0-00) 0.00 (0-00) 
(0-00) 0.84 (0-00) 0-09 (0-00) 0-00 
0-24 (0-00) (0-00) (0-00) 0-32 (0.00) 

(0-00) 0-09 (0-00) 0-60 (0.00) 0-13 
0-00 (0.00) 0.32 (0-00) (0.00) 

(0-00) 0-00 (0-00) 0.13 
0-39 (0-00) 0-00 

(0-00) 0-00 
(0-00) means absences by extinction rules. 

9 

(o.oo) 
0.32 

(o.oo) 
0.39 

(o.oo) 
o.oo 

10 

0-00 
(0-00) 
0-40 

(o.oo) 
o.oo 
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Table 3. I Uholl's, ethylenediamine sulphate 
l \ h  0 2 4 6 8 

0 1.00 0-08 0.17 0-00 0.69 
1 (0-00) 0.20 0-08 0-03 0-41 
2 (0.00) 0-29 0-08 0.34 0-00 
3 (0-00) 0-00 0-10 0.27 0.24 
4 0-22 0-00 0-24 0-12 0.49 
5 (0"00) 0-26 0-27 0.13 0-17 
6 (0-00) 0.16 0.13 0-53 0.15 
7 (0.00) 0.10 0-24 0.39 0-00 
8 0-33 0-11 0.47 0-22 0.33 
9 (0-00) 0-26 0-28 0.28 0.00 

10 (0.00) 0-07 0.00 0.39 0.00 
11 (0-00) 0-15 0-30 0.00 0-00 
12 0-00 0.00 0-40 0-00 0.00 
13 (0-00) 0-00 0.00 0.00 0.00 
14 (0"00) 0-13 0.00 0.00 0-31 
15 (0-00) 0-00 0-00 0-14 0-22 
16 0-52 0-00 0-37 0-00 
17 (0.00) 0-00 0-00 0-00 
18 (0-00) 0-57 0-00 0.29 
19 (0.00) 0-00 0-00 0.34 
20 0-37 0.00 0-58 
21 (0.00) 0-00 0.23 
22 (0.00) 0-52 

(0.00) means absences by extinc$ion rules. 

10 

0-00 
0-67 
0-37 
0-23 
~00 
0-35 
0-26 

a n d  also there are two a rb i t r a ry  pa ramete r s ;  one 
connected to the  Uh0{s with 1 ~ odd, and  the  o ther  
to those with h ~ 2 x odd. The above four relat ions 
would have  t aken  a slightly different form if we had  
chosen the  simple unit  cell. 

P r o c e d u r e  fo r  d e t e r m i n i n g  the p h a s e s  of the Uhko'S 

B y  ( l l a )  

2 +  Uo8o÷ Us0o > 21U44o+ U~ol ,  (T 1) 

where Uso o = Uo8 o and  U~o = U4~o by  (19). 

Calling Shoo the  sign of Uhko, and using the  values 
of Table 2, (T 1) becomes 

2-}-2 × 0-69Sos o ~ 2[0.84+0-84[, 
or  

1~-0"69Sos o ~ 1"68, 

and  we have  obviously 

Sos o =  + 1 .  (R1)  

B y  (12b) 

5+4U~o+ U8~0 _~ 4l U6~0+ U2~ol, (T 2) 

with Ue~o = U2~o by  (19), and  thus  

5 + 4  × 0-84S44o~- U8~o > 410"45+0"451. 

Here,  a l though Usio is not  observed, we can easily say  

Saa0 = + 1 ,  (R 2) 

because general ly [Us~o[ < 1.00. 

B y  ( l i b )  and  (15b) we have  

5--t- Ulo,~,o±4U62 o ~--> 4[Vsoo±V2~ol , (T  3) 

f rom which, using (R 1), 

5-b0"4081o,2,o~-4 × 0"45S6~ > 4[0"69+0-30S2~I . 

I f  we take  $9~ = + 1  in the  sum formula  of (T 3), 
we have  $62 o = + 1 ,  whereas if $9.2o------1 in the  
difference formula,  we have  $62 o = - - l ,  so we obtain  

$620 = $220 = a ,  (R 3) 

a being used for the  sake of la ter  convenience. 
On the  o ther  hand,  by  (12b) and (16b) we have  

5--[-4U1o,~,o--~--U620 >~ 4[Usoo--[-U2~o] , ( T 4 )  

and quite similarly we obta in  

8~o,2,o = S~zo = a .  (R 4) 

Next ,  by  ( l l a )  and  (15a), 

2"-'~ U2tlO,O-[- Ulot2to ~ 2[ U"660-~- U4~,o [ , (T  5) 

which becomes, using (R 2) and  (R 4), 

2 + 2  × 0-40a > 2[0-60S66o±0-841 . 

I n  the  sum formula,  a = + 1 ,  if $6~ o = + 1 ,  and in 
the difference formula,  a = - -1 ,  if Ss~ o = - -1 .  I n  the  
derivat ion of these conclusions some numerical  
contradict ions arose;  these can be a t t r ibu ted  to 
errors in the  Uhko's used, possibly, or a t  least  par t ly ,  
due to  the  use of the  too small value B = 1-0 A 2 
in the  t empera tu re  factor.  Thus we have  

S~e o = a .  (R 5) 

B y  ( l l b )  and  (15b) 

5-~-4U570--~-U13-~, 0 ~_ 4[U930 ,-~-U4-401 , (T 6) 

which gives, using (R 2), 

5-}-4 × 0-328570+ U13io --~ 4]0"398930+0"84[ . 

F r o m  this  we obtain,  as before, 

89so = 8 ~ o .  

As we have  a l ready  ment ioned,  there  is an arbi t rar iness  
in choosing the  signs of Uh~'s with h and  k odd, and  
we pu t  accordingly 

$93o = 857o = x ,  (R 6) 

where x is an  a rb i t r a ry  parameter .  
B y  ( l l a )  and  (15a) we have  

2-bUt~o±U~o ~ 2 I U ~ ± U 2 e 9 [ ,  (T 7) 

which becomes, using (R 3) and  (R 5), 

2 ± 0 - 6 0 a + 0 - 4 5 a  > 210-17S4ooI0-45a I . 

I n  the  sum formula ,  if S~o = a, we have  a----- -f-l, 
and  in t~e difference formula,  if $4oo = --a, we have  
a = - -1 .  Thus 

E 4 ~ =  + 1 .  (R7)  

By (15a) we have  
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Tab le 4. The "phases of U~,o'S, as determined 

k\b 0 1 2 3 4 5 6 7 8 9 10 

0 +1-00 (0-00) 10"081 (0 .00)  +0.17 (0.00) 0.00 (0-00) +0-69 (0.00) 0-00 
1 (0-00) (0 .00 )  (0-00) --0.10x (0-00) 0"00 (0.00) --0.37x (0 .00)  +0.32x (0.00) 
2 10-081 (0 .00)  -o.3o (0.00) 10.091 (0 .00)  -o.45 (0.00) 0.00 (0.00) -o-4o 
3 (0-00) +0 .10~  (0.00) (0.00) (0.00) +0 .24x  (0.00) 0.00 (0.00) +0-39x (0.00) 
4 +0-17 (0.00) ]0-09] (0-00)  +0.84 (0-00) ]0.09] (0-00) 0.00 (0-00) 0-00 
5 (0.00) 0-00 (0.00) --0.24x (0.00) (0-00) (0.00) --0-32x (0.00) 0-00 
6 0-00 (0.00) --0.45 (0.00) ]0.091 (0.00) --0-60 (0.00) 10.131 
7 (0-00) +0-37x (0-00) 0.00 (0-00) +0.32x (0 .00 )  (0-00) 
8 +0-69 (o-oo) o.oo (o-oo) o.oo (o.oo) ]o-131 
9 (o.oo) - o.32x (o-oo) - o.39x (o.0o) o-0o 

lo o.oo (o.oo) -o.4o (o.oo) o.oo 
(0"00) means absences by extinction rules. 
] U~o[ ~ 0" 13, which remain undetormined. 

x arbitrarily ~ssignable. 

2--  Ulo,~,o-- U~o ~ 21U71o-- Ua-3o[, (T 8) 

which becomes, using (R 2) and (R 4) as well as the 
extinction rule, 

2--0-40a--0-84 _~ 2[0-37S71o--0l . 

Although we obtain from this a = + 1 and a = --1, 
the former can be regarded as improbable from the 
consideration of the nature of inequality relation as 
well as the uncertainty due to the inexact temperature 
factor. Thus we obtain 

a - -  - -  1 .  (R 8) 

Up to this stage we have determined the signs of 
all important  structure factors U~o'S with h and k 
both even. 

Next,  by ( l l a )  and (15a), 

2-~ U57g-~-U310 ~ 21U13o±U44o], (T 9) 

which becomes, using (R 2), (R 6) and (20), 

2~0"32xT0"10S13 o ~ 2[0"10S13o+0"84 [ , 

and hence 
S13  0 = X .  (R 9) 

By ( l l a )  and (15a) we have 

2-{-U1%-+- U19o ~> 2lU~xo+Uosol, (T 10) 

which gives, using (R 1) and the extinction rule, 

2+0-37S17o±0.32S19 o _>- 2]0+0.69].  

As the sum and difference relations must  hold 
simultaneously, we have 

Sx~ o = - -$19  o = bx, (R 10) 

where a factor b is introduced to adjust  their relation 
to $67 o --  x. 

By (11a) and (15a) we have 

2~-UTlo-{-U19 o >_~ 2]U35o-~U44ol , (T 11) 

which becomes, using (R 2), (R 10) and (20), 

2+(--0.37bx)+(--O.32bx) > 2[0.25S35o±0.84], 

and hence, as above, we get 

$350 = - -bx .  (R 11) 

Up to now we have obtained the signs of all important  
structure factors U~0's with h and k both even as 
well as h and b both odd, except for a condition 
concerning the value of b. For  its determination, we 
also use ( l l a )  and (15a), from which we have 

2±Ugso+U5% > 2[UT~o±U~eol, (T 12) 

which becomes, using (R 3), ('R 6), (R 8) and (R 10), 

2±0 .00±0 .32x  > 2]--0.37bx±(--0.45)[ ,  

2±0.32x > 210-37bx±0"451. 

Here we get two conditions, 

bx = ~ x ,  

from which we choose, by a similar consideration as 
used in the case of (R 8), 

bx ~ +x;  
tha t  is 

b = + 1 .  (R 12) 

The structure factors of which the signs have so far 
been determined are the Uh~o'S with absolute values 
greater than 0.13, and these are given in Table 4. 

P r o c e d u r e  f o r  d e t e r m i n i n g  t h e  p h a s e s  o f  t h e  Uhoz'S 

For Uhoz's the method is the same as for the U~o's, 
except for the use of the equali ty relations (21) and 
(22). For  brevi ty  only some illustrative examples of 
the tests used will be given, together with the corre- 
sponding T and R series of formulae. As will be seen 
in these formulae, we also used some results already 
obtained in the preceding paragraph, such as the signs 
of U40 o and U8o o. 

5 + Uso o -l- 4Uo,o,x6~ 4]U4og -}- U4os [, (T13) 

2--{- Uso 4 -{- Uso ~ _~ 2]Uso o + Uoo 4 ], (T14) 

2 + Usos -4- Uso~ ~ 21Usoo -4-Uoos ], (T15) 
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Table 5. The phases of Uho{S, as determined 

l\h 0 2 4 6 8 

0 + 1.00 10-081 40"17 0.00 40"69 
1 (o.oo) + 0.20yz 10.081 10.031 -- 0.4lz 
2 (0.00) + 0.29y 10"081 + 0.34y 0.00 
3 (0.00) 0.00 10-101 10.271 10.241 
4 40-22  0.00 4 0 . 2 4  Io.121 4 0 . 4 9  
5 (0-00) + 0.26yz -- 0.27z 10.131 10.171 
6 (0.00) +0 .16y  Io-131 +o.53y Io.151 
7 (0-00) 10.101 + 0.24z -- 0.39yz 0.00 
8 + 0-33 10.111 + 0.47 Io.221 + 0-33 
9 (0.00) + 0.26yz -- 0.28z + 0.28yz 0.00 

10 (0-00) + 0.07y 0.00 + 0-39y 0-00 
11 (0-00) 10-15[ + 0-30z 0-00 0.00 
12 0.00 0.00 +0 .40  0.00 0.00 
~3 (o.oo) o.oo o.oo o.oo o.oo 
14 (0.00) !0-131 0.00 0.00 Io-311 
15 (0.00) 0.00 0.00 10.14[ 10.221 
16 40 .52  0"00 40"37 0.00 
17 (0.00) 0-00 0.00 0.00 
18 (0-00) +0"57y 0"00 + 0.29y 
19 (0.00) 0-00 0.00 --0.34yz 
20 +0-37 0.00 4 0 . 5 8  
21 (0.00) 0.00 --0-23z 
22 (0-00) +0 .52y  

(0"00) means  absences by ext inct ion rules. 
[Uhot[ which remain  undetermined .  

10 

0.00 
+ 0.67yz 
+0 .37y  
+ 0.23yz 

0"00 
+ 0.35yz 

IO'261 

2 +  

2 -  

2 4 -  

2 4 -  

5 4 -  

5 4 -  

5 4 -  

5 4 -  

5 4 -  

2 4 -  

5 4 -  

5 4 -  

5 4 -  

2 4 -  

2 4 -  

5-t: 

"2-t- 

2 - £  

5 4 -  

U4,o,x6 + U 4 , o , ~  21U4oo 

V4oo - V4,o,~6 => 21U4o~ 

Ueoe + U2,o, lo => 21U4os 

Ulo,o,1 4- U~ol > 21U2ot 

U4,o,i- ~ 4- 4U4,o,2o > 4[ U4o 4 

U14,0,21 21- 4 U e , o , i g  > 4]U4,o,2o 

4Ulo,o, 1 -t- U~,ofii~ 41U4o~" 

4Uxo,o,~ + U L o , ~  41U4oe 

4Ulo,o3 4- Ueo9 ~ 4l U8o4 

Uxo,o,1 + Uoo7 _~ 2[U8o4 

4Ulo,o,i -+- U2,o,15 => 4[ U6o ~ 

4Ulo,o,1 4- U2,o,17 ~>~ 4lU6o 9 

Ulo,o,2 4- 4U2,o,18 ~ 4[Ue,o,lo 

U6,o,14 • U6o2 ~ 21U8o 8 

U4,o,2o --1- U4o 4 ~ 2! U4,o,12 

4Ulo,o,5 -+- U~,o5 ~ 4l U2o 5 

Uo.,o,91 4- Ui-6,o,1 ~ ot r_ ~, ~ 4,0,11 

U'IO,O,1 4- U2,o,.'9 "=-:" 2] U4o ~ 

U6,0,29 " -3i- 4U6,o,T6 ~ 41 U6o6 

The results are" 

So,o,:e = + 1 ,  

Sso 4 --  See 4 a' 

+ 

4- 

± 

4- 

5= 

+ 

± 

4- 

+ 

+ 

+ 

4- 

± 

+ 

4- 

+ 

+ 

+ 

Uo,o,16 ] , (T 16) 

Uoos l ,  (T17) 

U2o~ I, (T18) 

Usoo. l ,  (T 19) 

Uo,o, lel,  (T 20) 

Ulo,o,1 ] , (T 21) 

Use 6 , (T22) 

U6o 6 , (T 23) 

U2og , (T 24) 

U2o5 , (T25) 

U4og , (T 26) 

U4og , (T 27) 

u4a  , (T 28) 

U2o s , (T 29) 

Uoo s , (T 30) 

Use o , (T 31) 

U6,O,lO [ , (T 32) 

Us,o, lo [ , (T 33) 

Uo, o,161 . (T 34) 

(R13) 

(R14) 

Ssos = Sees = b',  (R 15) 

$4,o,16 = + 1  , (R 16) 

S4os = Soos = b',  (R 17) 

$6o s = b'S2o 2 - -  b'y ,  (R 18)* 

$2o 1 = $1o,o,1 = yz ,  (R 19)t 

$4,0,20 : $404 : Ct, (R 20) 

~t6,0,19 = - -c ' y z ,  (R 21) 

$4o5 = --b'y2z = --b'z , (R 22) 

$4o 7 = b'y2z = b'z , (R 23) 

$2o5 --  a 'yz ,  (R 24) 

$6o 7 = - - y z ,  (R 25) 

b ' =  + 1 ,  (R26) 

$609 = yz ,  (R 27) 

Se,on o = S2,O, lS = d ' y ,  (R 28) 

~'~602 = Y, (R 29) 

$4,o,12 --  c', (R 30) 

$1o,o,5 = a'yz , (R 31) 

$4,O,ll = d' y~z = d' z , (R 32) 

* y is an  arb i t ra ry  pa rame te r  owing to an arbitrariness 
connected to the  Uh0t's wi th  h = 2 × odd. 

z is a fu r ther  a rb i t ra ry  pa ramete r  owing to an arbi- 
' t rariness connected  to the  Uhol's wi th  1----odd, and  the  
p roduc t  yz is connected  to the  Uhol's wi th  h ----- 2 × odd and 
l ---- odd. 
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Sto 9 = --d 'y~z = - - d '  z , (R 33) 

d ' :  + i .  (R34)§ 

Using these relations, we obta in  the signs of U~0~'s 
in terms of a', b', c', . . . ,  y and z, the last  two being 
the a rb i t ra ry  parameters  a l ready mentioned.  On fixing 
the values a', b', . . .  b y  using appropriate  relations, 
we come to the  f inal  results shown in Table 5. 

Construction of e lectron-densi ty  maps  

Following the  procedures described in the preceding 
paragraphs,  we have  obta ined all  the signs of Uu~'s 
with absolute values greater t h a n  0.13 wi th in  an hour, 
and  those of impor tan t  Ua0~'s wi th  absolute values 
greater t h a n  0-17 within five hours. Wi th  their  signs, 
after pu t t ing  x ~ + 1, y ~ --1 and z ~ --1 for the 
three a rb i t ra ry  sign parameters ,  and neglecting all  the  
smaller  s tructure factors, we synthesized electron- 
densi ty  projections upon the  (x y) and  (x z) planes. 
These projections (Figs. 1 and  2) are seen to be 

;" 7 ( ~ i ,  ,,, ,, ,,, -~ 

b 
sS %%%1 

-. ) I ((~J~./.. ; 
, , . ~ /  

0 . ~ 050 

I 
Fig. 1. Projection of electron density upon (x y) plane, using 

the signs determined by the linear inequality method only. 
The arbitrary parameter x is assigned as + 1. The contour 
lines are drawn on an arbitrary scale. 

a l ready p re t ty  good, and  enable us to locate all  the  
atoms except hydrogen in  approximate  positions and  

• thence to proceed to more exact  atomic parameters .  
Inspect ion of the figures indicates t ha t  the ethylene- 
diamine molecule or e thy lened iamin ium ion possesses 
an atomic configuration of the  so-called gauche form. 
However,  i t  is not  the  purpose of our present paper  
to go into the  details of the crystal  s tructure of this  
substance, which will be reported by  Messrs K. Sakurai  
and ¥ .  Tomiie in  the near  future. So far  we have 

§ (R 34) is deduced  on the  assumpt ion  t h a t  I Ue,0,22i -~ 0-88, 
a l though  it  lies beyond  the  ~bservable index field. 

derived l inear inequali t ies between structure factors 
of crystals with centres of s y m m e t r y  and  have  
i l lustrated the  usefulness and s impl ic i ty  of the i r  

0"25 
s 

i s s ~  • • ' " ~////, fr-"~\',,, ',,. .," ,,_.,' ",,,~, 
, ,, , , . o - - . .  s 

, } \ / - - "  

i ! ......... ) : 
! l I ( "-~ 

I • I 

0 ........ 025 0 -- @25 

Q 

Fig. 2. Projection of electron density upon (x z) plane, using 
the signs determined by the linear inequality method only. 
The arbitrary parameters y and z are both assigned as --1. 
The contour lines are drawn on an arbitrary scale. 

pract ical  appl icat ion in structure determinat ion.  There 
remains  another  case of l inear inequali t ies,  va l id  for 
crystals wi thout  centre of symmet ry ,  on which we 
in tend  to report  soon. 

We wish to express our thanks  to Messrs K.  Sakurai  
and  Y. Tomiie for the i r  kindness of pu t t ing  the i r  
X- ray  da ta  for te t ragonal  e thylenediamine  sulphate  
at  our disposal and  also for their  va luable  discussion 
of the present  problem. The cost of this  s tudy  was 
defrayed b y  the  Minis t ry  of Educat ion.  
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